Growth of function - Recurrence Tree Method

Recurrence Tree Method

In the recurrence tree method, we make a tree with the help of the recurrence equation. 

If equation is T(n) = a T(n/b) + C, then we make a recurrence tree




Example 1 Draw the recurrence relation T(n) = 2T(n/2) + n           

Compiling Time = 2T(n/2)    Running Time = n 
After summation all the operations = n + n + n + ... + n    [log n time]
                                                             = n.logn
                                                             = O(n.logn) is the Ans 

 
Example 2 Draw the recurrence relation T(n) = 2T(n/2) + n^2

Compiling Time = 2T(n/2)    Running Time = n^2

After summation all the operations = n^2 + (n^2)/2 + (n^2)/4 + (n^2)/8 + .... + 1
                                                             = n^2 [ 1 + 1/2 + 1/4 + 1/8 + .... + 1/n^2]
                                                                This is a G.P. Series with r = 1/2
                                                             = n^2 [ 1 / (1 - 1/2) ] 
                                                             = O(n^2) is the Ans. 

Example 3 Draw the recurrence relation T(n) = T(n/3) + T(2n/3) + n

Compiling Time = T(n/3) + T(2n/3)     Running Time = n

After summation all the operations = n + n + n + ... + n    [log n time]
                                                             = n.logn
                                                             = O(n.logn) is the Ans 

 

Post a Comment

0 Comments